Function of dorsal fins in bamboo shark during steady swimming.
نویسندگان
چکیده
To gain insight into the function of the dorsal fins in white-spotted bamboo sharks (Orectolobiformes: Hemiscyillidae) during steady swimming, data on three-dimensional kinematics and electromyographic recordings were collected. Bamboo sharks were induced to swim at 0.5 and 0.75 body lengths per second in a laminar flow tank. Displacement, lag and angles were analyzed from high-speed video images. Onset, offset, duration, duty cycle and asynchrony index were calculated from three muscle implants on each side of each dorsal fin. The dorsal fins were displaced more laterally than the undulating body. In addition, the dorsal tips had larger lateral displacement than the trailing edges. Increased speed was accompanied by an increase in tail beat frequency with constant tail beat amplitude. However, lateral displacement of the fins and duration of muscle bursts remained relatively constant with increased speed. The range of lateral motion was greater for the second dorsal fin (mean 33.3°) than for the first dorsal fin (mean 28.4°). Bending within the fin was greater for the second dorsal fin (mean 43.8°) than for the first dorsal fin (mean 30.8°). Muscle onset and offset among implants on the same side of each dorsal fin was similar. Three-dimensional conformation of the dorsal fins was caused by interactions between muscle activity, material properties, and incident flow. Alternating bilateral activity occurred in both dorsal fins, further supporting the active role of these hydrofoils in thrust production during steady swimming. The dorsal fins in bamboo sharks are capable of thrust production during steady swimming and do not appear to function as stabilizing structures.
منابع مشابه
Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.
A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite...
متن کاملFunctional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs. pelagic station-holding.
Bamboo sharks (Chiloscyllium plagiosum) are primarily benthic and use their relatively flexible pectoral and pelvic fins to rest on and move about the substrate. We examined the morphology of the pectoral fins and investigated their locomotory function to determine if pectoral fin function during both benthic station-holding and pelagic swimming differs from fin function described previously in...
متن کاملFunction of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering.
The function of the heterocercal tail in sharks has long been debated in the literature. Previous kinematic data have supported the classical theory which proposes that the beating of the heterocercal caudal fin during steady horizontal locomotion pushes posteroventrally on the water, generating a reactive force directed anterodorsally and causing rotation around the center of mass. An alternat...
متن کاملHydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis).
Recent kinematic and hydrodynamic studies on fish median fins have shown that dorsal fins actively produce jets with large lateral forces. Because of the location of dorsal fins above the fish's rolling axis, these lateral forces, if unchecked, would cause fish to roll. In this paper we examine the hydrodynamics of trout anal fin function and hypothesize that anal fins, located below the fish's...
متن کاملDorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering.
Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zoology
دوره 116 4 شماره
صفحات -
تاریخ انتشار 2013